Journal of Organometallic Chemistry, 256 (1983) 261–276 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SCHWEFEL(IV)-VERBINDUNGEN ALS LIGANDEN

III *. STRUKTUR- UND BINDUNGSISOMERIE BEI ELEKTRONENREICHEN SCHWEFELDIOXIDKOMPLEXEN

WOLFDIETER A. SCHENK * und FRANZ-ERICH BAUMANN

Institut für Anorganische Chemie der Universität, Am Hubland, 8700 Würzburg (B.R.D.) (Eingegangen den 6. Juni 1983)

Summary

The synthesis of electron rich sulfur dioxide complexes of the types fac-M(CO)₃-(dmpe)(η^2 -SO₂), mer-M(CO)₃(dmpe)(η^1 -SO₂), mer,trans-M(CO)₃(PR₃)₂(η^1 -SO₂) (M = Cr, Mo, W; PR₃ = PPh₂Me, P(OMe)₃, P(O-i-Pr)₃), trans-Mo(CO)₂(dppe)-(PR₃)(η^1 -SO₂) (PR₃ = PMe₃, PPh₂Me, P-i-Pr₃), as well as fac-Cr(CO)₃(bipy)(η^2 -SO₂), and fac-Mo(CO)₃(MeCN)₂(η^2 -SO₂) is described. The structures of these compounds are derived on the basis of NMR and vibrational spectroscopy. The results allow for an analysis of the various factors which contribute to the stability of the η^1 and η^2 bonding modes in (MSO₂)⁶ complexes. In the tricarbonyl series SO₂ can be replaced by pyridine in a reaction which in certain cases is accompanied by a change of stereochemistry around the metal.

Zusammenfassung

Die Synthese elektronenreicher Schwefeldioxidkomplexe der Typen $fac-M(CO)_3(dmpe)(\eta^2-SO_2)$, $mer-M(CO)_3(dmpe)(\eta^1-SO_2)$, $mer,trans-M(CO)_3(PR_3)_2-(\eta^1-SO_2)$ (M = Cr, Mo, W; PR₃ = PPh₂Me, P(OMe)₃, P(O-i-Pr)₃), trans-Mo(CO)₂(dppe)(PR₃)(\eta^1-SO₂) (PR₃ = PMe₃, PPh₂Me, P-i-Pr₃), sowie fac-Cr(CO)₃(bipy)(\eta^2-SO₂) und fac-Mo(CO)₃(MeCN)₂(\eta^2-SO₂) wird beschrieben. Die Strukturen dieser Verbindungen werden aus Kernresonanz- und schwingungs-spektroskopischen Daten abgeleitet und die Bedingungen für η^1 -bzw. η^2 -Koordination des Schwefeldioxids für (MSO₂)⁶-Komplexe analysiert. Von den Tricarbonyl-komplexen kann das SO₂ mit Pyridin verdrängt werden in einer Reaktion, die in bestimmten Fällen unter Änderung der Stereochemie am Metall verläuft.

²⁶¹

^{*} Für Mitteilung II siehe Ref. 4.

Einleitung

Schwefeldioxid kann an Übergangsmetalle in bemerkenswert vielfältiger Weise koordiniert werden [1,2]. In niedervalenten d^6 -Komplexen tritt es gewöhnlich η^1 coplanar (S)-gebunden oder η^2 (S-O)-gebunden auf [2]. Über eine Reihe verhältnismässig elektronenarmer und substitutionslabiler Carbonyl-SO₂-Komplexe des Typs cis-M(CO)₄(L)SO₂ (M = Cr, Mo, W; L = CO, PMe₃, PPh₂Me, P(OMe)₃) haben wir kürzlich berichtet. Die η^1 -coplanare Koordination des SO₂ ging aus schwingungsspektroskopischen Daten [3] und einer Röntgenstrukturanalyse von Cr(CO)₅SO₂ [4] hervor. Erst bei den elektronenreicheren Tricarbonylen fac- $M(CO)_3$ (dppe)SO₂ trat das SO₂ als η^2 -Ligand auf, in den daraus rasch entstehenden meridionalen Isomeren ist das Schwefeldioxid wieder η^{i} -coplanar koordiniert [3]. In der vorliegenden Arbeit berichten wir über elektronenreichere Carbonyl-SO₂-Komplexe des Chroms, Molybdäns und Wolframs. Zum einen wollten wir damit einen weiteren Einblick erhalten in die Zusammenhänge zwischen der Koordinationsweise des Schwefeldioxids, der Geometrie des Komplexes und der Natur der übrigen Liganden bei {MSO₂}⁶-Komplexen. Zum anderen erwarteten wir, dass mit zunehmender Elektronendichte am Metall substitutionsstabile Komplexe entstehen würden, die uns die Entwicklung einer Chemie am koordinierten SO₂ ermöglichen sollten.

Ergebnisse

Synthese

Der Ersatz des häufig verwendeten Chelatliganden Bis(diphenylphosphino)ethan in den Komplexen $M(CO)_3(dppe)SO_2$ durch sein permethyliertes Analogon dmpe sollte bereits zu einer merklichen Erhöhung der Elektronendichte am Metall führen. Entsprechende SO₂-Komplexe lassen sich für M = Mo, W wieder photochemisch darstellen, wobei sich Acetonitril als labiler Ligand besonders bewährt hat (Gl. 1).

M = Mo, W

Aus nicht näher untersuchten Gründen lässt sich diese photochemische Synthese nicht auf Chrom übertragen. Es gelingt aber, aus Tris(acetonitril)tricarbonylchrom zwei der Nitrilliganden durch dmpe zu substituieren (Gl. 2). Die Bildung dmpe-

verbrückter Spezies kann durch Arbeiten bei höherer Verdünnung unterdrückt werden. Die so erhaltenen labilen Vorstufen setzen sich bei 0°C in SO₂-gesättigtem $CH_2Cl_2/Hexan-Gemisch zunächst zu facialen \eta^2-SO_2-Komplexen um. Diese lagern$ sich ebenso wie die analogen dppe-Derivate [3] bereits in der Reaktionslösung zu $den meridionalen <math>\eta^1$ -Isomeren um (Gl. 3). Dennoch konnte zumindest der faciale

M = Cr, Mo, W

Mo-Komplex in reiner Form isoliert werden.

Nach dem gleichen Syntheseprinzip lässt sich fac-Cr(CO)₃(bipy)(η^2 -SO₂) darstellen (Gl. 4). Dies ist der erste Chrom-Amin-SO₂-Komplex, mit ihm existiert jetzt auch

für η^2 -SO₂-Komplexe eine vollständige Reihe isostruktureller Chrom-, Molybdänund Wolfram-Derivate. Eine facial meridional-Isomerisierung konnten wir, auch in Gegenwart von Säure, weder an diesem Komplex noch an seinen schon lange bekannten Homologen [5] beobachten. Auch Bis(acetonitril)tricarbonylschwefeldioxid-molybdän, das nach Gl. 5 erhalten wurde, isomerisiert nicht.

Einen weiteren strukturellen Freiheitsgrad für Tricarbonyl- SO_2 -Komplexe gewinnt man bei Ersatz des Chelatphosphins durch zwei einzähnige Phosphinliganden. Den in der Penta- und Tetracarbonylreihe so erfolgreichen Syntheseweg über Halogenocarbonylmetallate konnten wir nur noch in einem Fall mit mässigen Ausbeuten verwirklichen (Gl. 6). Eine allgemein anwendbare Synthese für diese Verbindungs-

klasse geht aus von der schrittweisen Substitution von Acetonitril (Gl. 7). Da

Phosphine und insbesondere Phosphite schwächer *cis*-labilisierend sind als *N*-Donoren [6,7], nimmt die Labilität der Metall-N-Bindung mit jedem Substitutionsschritt beträchtlich ab. Daher gelingt es ohne Schwierigkeiten, durch stöchiometrischen Einsatz des *P*-Donors die Mono-Acetonitril-Komplexe gezielt darzustellen. Diese tauschen wieder den Nitrilliganden unter milden Bedingungen gegen SO₂ aus, aus den facialen Vorstufen entstehen in allen Fällen meridionale η^{l} -SO₂-Komplexe (Gl. 7). Lediglich für M = Mo, PR₃ = P(OMe)₃ erhielten wir ein Produktgemisch, das neben dem meridionalen Komplex vermutlich auch das faciale Isomere enthielt.

Reaktive Dicarbonylmolybdän-Komplexe sind besonders leicht durch "reduktive Entallylierung" von π -Allyl-Halogeno-Komplexen zu erhalten [8–11]. In ersten Vorversuchen wurde $Mo(CO)_2(PBu_3)_3MeCN$ [10] mit SO₂ umgesetzt. Dabei entstand jedoch ein schlecht zu trennendes Produktgemisch, dessen spektroskopische Eigenschaften erkennen liessen, dass neben Acetonitril zum Teil auch Tributylphosphin substituiert worden war. Die Einführung einer Chelatbrücke sollte die Labilität der Phosphinliganden drastisch verringern. Durch Umsetzung eines dppe-Allyl-Molybdänkomplexes [8] mit zwei Mol Phosphin in Acetonitril erhielten wir geeignete reaktive Vorstufen, die mit SO₂ wiederum in eindeutiger Weise reagierten (Gl. 8).

Die hier beschriebenen Schwefeldioxidkomplexe sind orangefarbene bis tiefrote kristalline Festkörper. Sie lösen sich in polaren organischen Solventien wie Dichlormethan oder Chloroform und sind auch in Lösung nur wenig luftempfindlich.

Spektren und Struktur

Eindeutigen Aufschluss über die Konstitution der neuen Verbindungen geben die ³¹P-Kernresonanz- (Tab. 1) und die Schwingungsspektren (Tab. 2). Die Tricarbonylkomplexe vom Typ $M(CO)_3(PR_3)_2SO_2$ zeigen in der Phosphorresonanz ein Singulett, ggf. mit ¹⁸³W-Satelliten, die Grösse von ¹J(¹⁸³W-³¹P) lässt erkennen, dass

Verbindung	δ(P _A) (ppm)	δ(P _B) (ppm)		J(W – P _B) (Hz)	$J(\mathbf{P}_{\mathbf{A}} - \mathbf{P}_{\mathbf{B}})$ (Hz)
mer-Cr(CO) ₃ (dmpe)SO ₂	59.8	57,1			30
fac-Mo(CO) ₃ (dmpe)SO ₂	29.3	27.2			16
mer-Mo(CO) ₃ (dmpe)SO ₂	33.8	32.1			19
fac-W(CO) ₃ (dmpe)SO ₂	16.7	16.2	221	203	7
mer-W(CO) ₃ (dmpe)SO ₂	13.3	11.7	228	243	7
fac-W(CO) ₃ (dppe)SO ₂	42.3	39.4	205	223	< 3
mer, trans-Cr(CO) ₃ (PPh ₂ Me) ₂ SO ₂	42.3				
mer, trans-Cr(CO) ₃ (P(OMe) ₃) ₂ SO ₂	183.1				
mer, trans-Mo(CO) ₃ (PPh ₂ Me) ₂ SO ₂	21.3				
mer, trans-Mo(CO) ₃ (P(O-i-Pr) ₃) ₂ SO ₂	156.5				
mer, trans-W(CO) ₃ (PPh ₂ Me) ₂ SO ₂	- 2.0		263		
mer, trans-W(CO) ₁ (P(OMe) ₁) ₂ SO ₂	141.2		415		

³¹P-NMR-DATEN DER TRICARBONYL-SCHWEFELDIOXID-KOMPLEXE

die Phosphinliganden *trans*-Positionen am Koordinationsoktaeder besetzen [12]. Die Infrarotspektren im CO-Valenzschwingungsbereich belegen durch ihr typisches Bandenmuster schwach-mittel-stark die meridionale Anordnung der CO-Liganden. Bandenlage und -abstand von $\nu(SO, asym)$ und $\nu(SO, sym)$ sind typisch für η^{1} -(S)-Koordination des SO₂ [2], damit ergibt sich zwanglos die in Gl. 7 gezeigte

TABELLE 2

TABELLE 1

CHARAKTERISTISCHE IR-ABSORPTIONEN DER SCHWEFELDIOXID-KOMPLEXE

Verbindung	$\nu(CO)$ (cm ⁻¹)				Lösungs- mittel	ν (SO) ^{<i>a</i>} (cm ⁻¹)		Δν
						asym	sym	
mer-Cr(CO) ₃ (dmpe)SO ₂	2010w	1945m		1907s	CH ₂ Cl ₂	1206m	1063s	143
fac-Mo(CO) ₃ (dmpe)SO ₂	1996s		1917vs		CH ₂ Cl ₂	1150s	920m	230
mer-Mo(CO) ₃ (dmpe)SO ₂	2020w	1950m		1917s	CH ₂ Cl ₂	1222m	1065s	157
fac-W(CO) ₃ (dmpe)SO ₂	1995s		1905vs		CHCl ₃	1155s ^b	890m ^b	265
mer-W(CO) ₃ (dmpe)SO ₂	2015w	1 940 m		1919s	CH ₂ Cl ₂	1218m	1062s	156
fac-W(CO) ₃ (dppe)SO ₂	1991s	1915s		1905s	CH ₂ Cl ₂	1144s	901m	243
fac-Cr(CO) ₃ (bipy)SO ₂	1986s	1906s		1875s	CH ₂ Cl ₂	11 46 s	950s	196
fac-Mo(CO) ₃ (MeCN) ₂ SO ₂	1998s	1912sh		1898vs	CH ₂ Cl ₂	1166s	932m	234
mer, trans-Cr(CO) ₃ (Ph ₂ MeP) ₂ SO ₂	2011w	1951m		1906vs	CH ₂ Cl ₂	1230m 1225m	1063s	164
mer, trans-Cr(CO) ₃ ((MeO) ₃ P) ₂ SO ₂	2032w	1978m 1971m		1930vs	Hexan	1244m	1090s	154
mer, trans-Mo(CO) ₃ (Ph ₂ MeP) ₂ SO ₂	2024w	1959m		1915vs	CH ₂ Cl ₂	1235m 1230m	1067s	166
mer, trans-Mo(CO) ₃ ((i-PrO) ₃ P) ₂ SO ₂	2037w	1985m	1925vs		Hexan	1250 m	1084s	166
mer, trans- $W(CO)_3(Ph_2MeP)_2SO_2$	2014w	1945m		1905s	CH ₂ Cl ₂	1233m 1230m	1068s	164
mer, trans-W(CO) ₃ ((MeO) ₃ P) ₂ SO ₂	2034w	1964m		1928s	MCH	1250m	1091s	159
trans-Mo(CO) ₂ (dppe)(PMe ₃)SO ₂	1981vvv	v	1876vs		CH ₂ Cl ₂	11 79 m	1052s	127
trans-Mo(CO) ₂ (dppe)(Ph ₂ MeP)SO ₂	1985vw	c	1883vs		CHCl ₃	1200m	1056s	144
trans-Mo(CO) ₂ (dppe)(i-Pr ₃ P)SO ₂	1973vw	d	1867vs		CH ₂ Ci ₂	1194m	1050s	144

^a Nujol. ^b CS₂. ^c Raman (fest) 1973 cm⁻¹. ^d Raman (fest) 1980 cm⁻¹.

Struktur dieser Verbindungen. Über Komplexe mer, trans- $M(CO)_3(PR_3)_2SO_2$ mit sterisch sehr anspruchsvollen Phosphinliganden (R = Isopropyl, Cyclohexyl) war kürzlich von anderer Seite berichtet worden [13]. Offensichtlich ist die trans-Anordnung der beiden Donorliganden aber auch aus elektronischen Gründen besonders günstig.

Erzwingt man durch Einführung einer Chelatbrücke die *cis*-Stellung der beiden Phosphordonoren, so nimmt im thermodynamisch stabileren Isomeren das SO₂ eine Position *trans* zu einem der beiden Phosphoratome ein (Gl. 3). Die meridionale Anordnung der CO-Gruppen und die η^1 -coplanare (S)-Koordination des SO₂ lässt sich wiederum aus den Infrarotspektren entnehmen (Tab. 2). Die Zuordnung der beiden ³¹P-Resonanzen bei dieser Geometrie ist wegen des geringen Unterschiedes der chemischen Verschiebungen problematisch. Aus den verschiedenen Cr-C-Bindungslängen in Cr(CO)₅SO₂ [4] lässt sich ableiten, dass SO₂ in seinem *trans*-Einfluss gegenüber den VIA-Metallen in der Oxidationsstufe 0 etwa zwischen CO und P(OPh)₃ einzuordnen ist. Wenn auch die Korrelation zwischen strukturellem und NMR-spektroskopischem *trans*-Einfluss nicht immer überzeugend ist [14,15], können wir doch zumindest für *mer*-W(CO)₃(dmpe)(η^1 -SO₂) die Phosphorresonanz mit der gegenüber W(CO)₄(dmpe) (¹J(W-P) 221 Hz) deutlich vergrösserten Wolfram-Phosphor-Kopplung dem zum SO₂ *trans*-ständigen Phosphor zuordnen.

Für die facialen Komplexe kommen drei unterschiedliche Orientierungen des η^2 -gebundenen SO₂ in Frage (Fig. 1). In Struktur A steht die koordinierte SO-Bindung mit den equatorialen Liganden auf Lücke. Eine solche Anordnung wurde röntgenographisch für $Mo(CO)_3(phen)(\eta^2-SO_2)$ gefunden (phen = ortho-Phenanthrolin) [16]. Bei der eng verwandten Verbindung Mo(CO)₂(bipy)(η^2 -SO₂)₂ sind beide SO₂-Liganden wie in Fig. 1B angeordnet [16]. Durch Drehung des SO2-Liganden um 90° entsteht daraus Struktur C mit dem exo-Sauerstoff zwischen beiden Carbonylliganden. Das ³¹P-NMR-Spektrum von fac-Mo(CO)₃(dppe)(η^2 -SO₂) zeigte im Bereich von 210 bis 300 K keine temperaturabhängigen Phänomene [3]. Da auch bei rascher Rotation des SO₂ die beiden Phosphorkerne anisochron bleiben, konnten wir aufgrund dieser Daten nicht zwischen einer starren Struktur oder dynamischem Verhalten unterscheiden. Einen weiteren Hinweis liefert aber das Spektrum der entsprechenden Wolfram-Verbindung (Tab. 1). Aufgrund der recht unterschiedlichen Wolfram-Phosphor-Kopplungen dürfte sowohl eine Struktur gemäss Fig. 1A als auch eine rasche Rotation des SO₂-Liganden auszuschliessen sein. Von den verbleibenden Anordnungen B und C ist C vermutlich wegen geringerer sterischer Wechselwirkungen zwischen den organischen Gruppen am Phosphor und

в

A

Fig. 1. Mögliche Orientierungen des SO₂ in den Komplexen fac-M(CO)₃(dmpe)(η^2 -SO₂) (M = Cr, Mo, W).

С

dem exo-Sauerstoff des SO₂-Liganden energetisch etwas günstiger. Die η^2 -SO₂-Komplexe besitzen damit praktisch eine pentagonal-bipyramidale Struktur. Dem Phosphor in der pentagonalen Ebene steht für seine Bindung zum Wolfram nur ein Orbital mit entsprechend verringertem s-Anteil zur Verfügung, was sich unmittelbar in kleineren Kopplungskonstanten ¹J(W-P) äussert.

Auch in den beiden N-Donor-Derivaten fac-Cr(CO)₃(bipy)(η^2 -SO₂) und fac-Mo(CO)₃(MeCN)₂(η^2 -SO₂) ist das Schwefeldioxid side-on koordiniert. Erfolglos blieben Versuche, den Chrom-Komplex säurekatalysiert zu isomerisieren. Dies steht im Einklang mit der allgemeinen Erfahrung, dass harte Donoren aus der ersten Achterperiode stets eine Position *trans* zu CO bevorzugen.

In der Dicarbonylreihe tritt mit der Substitution des guten Donors Acetonitril durch den Akzeptor SO₂ wieder eine Umordnung der Liganden am Komplex ein. Die drei Phosphoratome liegen in Edukt und Produkt in einer Ebene, erkennbar an der grossen *trans*-Kopplung $J(P_A-P_C)$ (Tab. 3). Während jedoch in den Nitrilkomplexen die beiden CO-Gruppen zueinander *cis* stehen, besetzen sie in den SO₂-Komplexen *trans*-Positionen am Oktaeder. Von den beiden CO-Valenzschwingungen tritt im Infrarotspektrum nur die asymmetrische mit grosser Intensität auf, die symmetrische ist nahezu IR-verboten, kann aber im Ramanspektrum als starke Streulinie beobachtet werden (Tab. 2).

Die SO-Schwingungsfrequenzen der Pentacarbonyle $M(CO)_5SO_2$ [3] liegen an der oberen Grenze des für η^1 -(MSO₂)⁶-Komplexe typischen Bereiches [2]. Lediglich bei kationischen Derivaten treten Schwingungen nach höherer Frequenz auf [17]. Mit zunehmender Substitution der CO-Gruppen durch Donorliganden nehmen sowohl die Schwingungsfrequenzen als auch die Differenz $\nu(asym) - \nu(sym)$ ab (Tab. 4). Die SO-Valenzschwingungen der Dicarbonylkomplexe liegen bereits sehr niedrig und in einem Bereich, der eigentlich schon für η^1 -pyramidal gebundenes SO₂ typisch ist (Tab. 2). Diese Geometrie scheidet jedoch für $(MSO_2)^6$ -Komplexe aus elektronischen Gründen aus [2], die niedrigen SO₂-Schwingungsfrequenzen sind vielmehr als Resultat der hohen Elektronendichte am Metall anzusehen. Offensichtlich folgen die SO-Valenzschwingungen von η^1 -SO₂-Komplexen den gleichen Trends wie die CO-Valenzschwingungen, für koordinierte Sulfoxide hatte schon Strohmeier auf diesen Befund hingewiesen [18]. Für η^2 -gebundenes SO₂ liegt wesentlich weniger Vergleichsmaterial vor, da die weitaus meisten η^2 -SO₂-Komplexe von Chrom, Molybdän und Wolfram vom Strukturtyp fac-M(CO)₃(L-L)(η^2 -SO₂) sind mit rela-

TABELLE 3

³¹P-NMR-DATEN DER DICARBONYL-NITRIL- UND DICARBONYL-SO₂-KOMPLEXE

Verbindung	$\delta(P_A)^a$ (ppm)	$\delta(P_B)^{b}$ (ppm)	δ(P _C) ^c (ppm)	$ \begin{array}{c} J(P_{A} - P_{B}) \\ (Hz) \end{array} $	$ \begin{array}{c} J(\mathrm{P_A}-\mathrm{P_C}) \\ (\mathrm{Hz}) \end{array} $	$\frac{J(P_{B} - P_{C})}{(Hz)}$
Mo(CO) ₂ (dppe)(PMe ₃)MeCN ^d	72.4	55.5	-4.0	3	103	25
$Mo(CO)_2(dppe)(P-i-Pr_3)MeCN^d$	72.6	45.0	58.0	4	101	23
Mo(CO) ₂ (dppe)(PPh ₂ Me)MeCN ^d	71.4	53.0	32.7	< 3	101	22
Mo(CO) ₂ (dppe)(PMe ₃)SO ₂	60.3	57.1	- 11.1	13	60	33
Mo(CO) ₂ (dppe)(P-i-Pr ₃)SO ₂	59.5	52.0	54.4	10	63	27
Mo(CO) ₂ (dppe)(PPh ₂ Me)SO ₂	60.7	55.8	19.2	13	64	30

^a Dppe, P trans zum einzähnigen Phosphin. ^b Dppe, P cis zum einzähnigen Phosphin. ^c Einzähniges Phosphin. ^d C₆D₆/MeCN.

TABELLE 4

Verbindung v(asym) v(sym) Δv (cm^{-1}) (cm^{-1}) Mo(CO), SO2 ª 1292 1106 186 cis-Mo(CO)₄(PMe₃)SO₂^a 1096 193 1289 mer, trans-Mo(CO)₃(PPh₂Me)₂SO₂ 1233 1067 166 mer-Mo(CO)₃(dppe)SO₂ 1229 1072 157 mer, trans-Mo(CO)2(dppe)(PPh2Me)SO2 1200 1056 144

VERGLEICH DER SO-VALENZSCHWINGUNGSFREQUENZEN VERSCHIEDEN SUBSTITUIERTER η^{l} -SO₂-KOMPLEXE

^a Lit. 3.

tiv geringer Variation der Donorstärke des Chelatliganden L-L. Es scheint sich jedoch abzuzeichnen, dass im Unterschied zu den η^{l} -Komplexen mit zunehmender Ordnungszahl von M auch die Differenz $\Delta \nu$ zunimmt.

Keine Klarheit bestand bisher über die Faktoren, welche über η^{1} - bzw. η^{2} -Koordination des SO₂ bestimmen. In Fig. 2 sind alle 16-Elektronen-Fragmente $M(CO)_{5-n}L_n$ (M = Cr, Mo, W; L = Donorligand) zusammengestellt, von denen eindeutig charakterisierte SO₂-Derivate bekannt sind. Offensichtlich wird SO₂ bevorzugt η^{1} -coplanar koordiniert, gleichgültig, ob das Metallfragment elektronenarm oder elektronenreich ist. In dieser Koordinationsweise ähnelt SO₂ einem Carbenliganden: HOMO ist das überwiegend am Schwefel lokalisierte Orbital $8a_1$, LUMO das $3b_1$ -Orbital, das ebenfalls einen grossen Koeffizienten am Schwefel aufweist [19,20]. Damit ist SO₂ ein mässig guter, weicher Donor und ein sehr guter "single faced" π -Akzeptor. η^1 -Coplanare Koordination wird also bevorzugt gegenüber solchen Fragmenten auftreten, die ein besonders hoch liegendes besetztes *d*-Orbital von π -Symmetrie besitzen. Es sind dies die Fragmente C, D und G (Fig. 2), bei denen die Koordinationslücke mit mehreren Donorliganden in einer Ebene steht, das koordinierte SO₂ stellt sich dann senkrecht zu dieser Ebene.

Auch bei η^2 -Koordination wird das LUMO für die Rückbindung herangezogen [1,2]. Zusätzlich kommt es zu einer σ -Wechselwirkung zwischen dem nächstniedrigen

Fig. 2. Koordinationsweise des SO₂ an 16-Elektronen-Fragmente $M(CO)_{5-n}L_n$ (M = Cr, Mo, W; L = Donorligand).

besetzten, an den Sauerstoffatomen lokalisierten $1a_2$ -Orbital des SO₂ und dem leeren Orbital des Metalls. In dieser Koordinationsweise ist SO₂ daher ein harter σ -Donor und ein guter π -Akzeptor. Da die Wechselwirkung zwischen der harten Donorfunktion und dem weichen Übergangsmetall nicht viel zur Bindungsenergie beiträgt, scheidet die η^2 -Koordination für elektronenarme Fragmente wie A oder B von vornherein aus. Auf die Bedeutung einer linearen Anordnung von Donor, Metall und Akzeptor cis zur Koordinationslücke für die η^2 -Koordination des SO₂ wurde bereits hingewiesen [2]. Solche Ligandenkombinationen sind ausser bei B noch bei D, E und F verwirklicht. In D befindet sich trans zur Koordinationslücke ein Donorligand. Damit ist auch für D die η^2 -Koordination weniger günstig, weil in Ubergangsmetallkomplexen harte Liganden stets Positionen trans zu besonders weichen Liganden wie CO bevorzugen (Pearson's "antisymbiosis"-Prinzip) [21,22]. Ein Grenzfall scheint bei der Verbindung Mo(CO)₂(bipy)(η^2 -SO₂)₂ vorzuliegen, in der zwei η^2 -SO₂-Liganden einander gegenüberstehen. Bemerkenswerterweise sind die beiden SO2-Moleküle jedoch so gegeneinander verdreht, dass die beiden Mo-O-Bindungsvektoren miteinander einen Winkel von 158.7° bilden, während in $Mo(CO)_3(phen)(\eta^2-SO_2)$ endo-Sauerstoff und ein CO-Ligand exakt trans zueinander stehen («O-Mo-C 177.4°) [16].

Besonders interessant in diesem Zusammenhang ist der Fall F. Über SO₂-Derivate dieses Typs mit M = Mo, L = Triphenylphosphin und L' = Acetonitril, Pyridin, Alkylisonitril, Arylisonitril, Kohlenmonoxid wurde kürzlich berichtet [23]. Für L' = CO oder Arylisonitril beobachtet man η^1 -coplanare Koordination, ist L' jedoch ein starker Donor (Acetonitril, Pyridin), dann wird das SO₂ side-on koordiniert. Beide Koordinationsweisen im Gleichgewicht nebeneinander findet man für L' = t-Butyl- oder Cyclohexylisonitril. Für diesen Übergang von η^1 zu η^2 kann jedoch nicht die pauschale Erhöhung der Elektronendichte am Metall allein verantwortlich gemacht werden. So ist z. B. in den weniger elektronenreichen Komplexen vom Typ E das SO₂ η^2 -koordiniert, in den elektronenreicheren Verbindungen vom Typ G jedoch wieder η^1 . Eine entscheidende Rolle spielt auch hier sicherlich wieder die Existenz einer linearen Gruppierung Donor-Metall-Akzeptor *cis* zum SO₂-Liganden, die das η^2 -Isomere begünstigt.

Damit können wir die Bedingungen für die zwei konkurrierenden Koordinationsweisen bei $(MSO_2)^6$ -Komplexen, η^1 -coplanar oder η^2 , abstecken: Generell ist die η^1 -coplanare Koordination des SO₂ bevorzugt. Gegenüber elektronenreicheren Metallfragmenten kann SO₂ aber auch als η^2 -Ligand auftreten. η^2 -Koordination wird insbesondere dann begünstigt sein, wenn *cis* zum SO₂ sich ein guter Donor- und ein guter Akzeptorligand gegenüberstehen und wenn die Position *trans* zum SO₂ mit einem guten Akzeptor, vorzugsweise CO, besetzt ist.

Substitutionsreaktionen

Die SO₂-Komplexe der Penta- und Tetracarbonylreihe hatten sich als höchst substitionslabil erwiesen, und auch von den Tricarbonylen *fac*- und *mer*-M(CO)₃(dppe)SO₂ liess sich das SO₂ noch bei Raumtemperatur verdrängen [3]. Mit vergleichbaren Halbwertszeiten von 2 min bis 2 h reagieren auch die Tricarbonyl-SO₂-Komplexe dieser Arbeit mit Pyridin. Lediglich *mer*-Cr(CO)₃(dmpe)SO₂ erweist sich als nahezu inert bei Raumtemperatur, aber auch bei den Komplexen *mer*, *trans*-M(CO)₃(PR₃)₂SO₂ reagieren die Chrom-Derivate deutlich langsamer als ihre Molybdän- und Wolfram-Analoga. Die Dicarbonyle schliesslich lassen sich in Pyridin unzersetzt lösen.

Interessant ist vor allem die Stereochemie der Substitution des Schwefeldioxids. Sowohl faciale als auch meridionale Chelatphosphin-SO₂-Komplexe ergeben faciale Produkte. Analoge Verhältnisse hatten wir bei Olefin-Substitutionsreaktionen gefunden [24]. Hier wie dort muss offenbar der Substitution des labilen Liganden die meridional-facial-Isomerisierung vorausgehen, da die Entstehung einer Koordinationslücke *trans* zu einem Donorliganden energetisch äusserst ungünstig ist [6]. Bei den Komplexen *mer,trans*-M(CO)₃(PR₃)₂SO₂ wird das Schwefeldioxid dagegen mit einer Ausnahme unter Erhalt der Stereochemie am Metall substituiert (Gl. 9).

Andererseits verläuft auch die Substitution von Acetonitril an den Komplexen fac-M(CO)₃(PR₃)₂MeCN stereospezifisch. Offensichtlich ist die Rekombination des fünffach koordinierten Zwischenproduktes mit dem in hoher Konzentration vorliegenden neuen Liganden rascher als die intramolekulare Umlagerung.

Experimenteller Teil

Lösungsmittel wurden nach üblichen Verfahren gereinigt und mit Stickstoff gesättigt, Schwefeldioxid wurde durch eine Waschflasche mit konz. Schwefelsäure geleitet, alle Versuche wurden unter Inertgas durchgeführt.

Spektren: IR: Perkin–Elmer 283, kalibriert mit CO, H_2O und Polystyrol. ³¹P-NMR: Bruker WH 90 mit ¹H-Breitbandentkopplung, das Deuteriumsignal des Lösungsmittels (CDCl₃) diente als Lock und interne Referenz.

1. fac-Tricarbonyl-acetonitril-2,2'-bipyridin-chrom

Zu einer Lösung von 1.3 g (5.0 mmol) Cr(CO)₃ (MeCN)₃ [25] in 100 ml Acetonitril gibt man 0.08 g (5.0 mmol) 2,2'-Bipyridin und rührt bei Raumtemperatur. Aus der tiefroten Lösung fällt nach kurzer Zeit das Produkt aus. Man engt i. Vac. auf 30 ml ein, kühlt auf -20° C, filtriert ab, wäscht das dunkelrote Produkt mit 30 ml Diethylether und trocknet i. Vac. Ausbeute: 1.37 g (82%), Zers. P. 140°C. IR (Acetonitril): ν (CO) 1906s, 1786s cm⁻¹. (Gef.: C, 50.0; H, 3.37; N, 10.8. C₁₅H₁₁CrN₃O₃ ber.: C, 54.1; H, 3.33; N, 12.6%). Das Produkt wurde ohne weitere Reinigung mit SO₂ umgesetzt.

2. fac-Tricarbonyl-2,2'-bipyridin- η^2 -schwefeldioxid-chrom

Man sättigt 90 ml CH_2Cl_2 bei 0°C mit SO_2 und setzt 1.0 g (3.0 mmol) $Cr(CO)_3$ (bipy)MeCN zu. Die entstehende tiefrote Lösung wird 2 h bei 0°C im SO_2 -Strom gerührt, anschliessend über Celite filtriert und auf 20 ml eingeengt. Mit 50 ml Hexan fällt man das Produkt als dunkelrotes Pulver. Man filtriert ab, wäscht mit 10 ml Hexan und trocknet i. Vac. Ausbeute: 0.53 g (50%), Zers. P. 185°C. (Gef.: C, 43.7; H, 2.80; N, 7.71; S, 8.32. $C_{13}H_8CrN_2O_5S$ ber.: C, 43.8; H, 2.26; N, 7.86; S, 9.00%).

3. fac-Tricarbonyl-bis(acetonitril)-n²-schwefeldioxid-molybdän

10 ml CH₂Cl₂ werden bei 0°C mit SO₂ gesättigt und 0.68 g (2.2 mmol) $Mo(CO)_3(MeCN)_3$ [25] zugesetzt. Die entstehende dunkelrote Lösung wird 2 h bei 0°C im SO₂-Strom gerührt und anschliessend über Celite filtriert. Man wäscht den schwarzbraunen Rückstand mit 5 ml CH₂Cl₂ und fällt aus den vereinigten Filtraten mit 80 ml Hexan den SO₂-Komplex als violettes Pulver. Man filtriert ab, wäscht mit 10 ml Hexan und trocknet i. Vac. Ausbeute: 0.62 g (85%), Schmp. 92–95°C (Zers.). (Gef.: C, 24.4; H, 2.25; N, 7.44; S, 9.81. C₇H₆MoN₂O₅S ber.: C, 25.8; H, 1.85; N, 8.59; S, 9.83%).

4. fac-Tricarbonyl-acetonitril-bis(dimethylphosphino)ethan-chrom

Zu einer Lösung von 1.3 g (5.0 mmol) Cr(CO)₃(MeCN)₃ [25] in 140 ml Acetonitril gibt man 0.75 g (5.0 mmol) dmpe und rührt 3 h im Dunkeln bei Raumtemperatur (IR-Kontrolle). Die Lösung wird anschliessend i. Vac. auf 20 ml eingeengt und nach Zusatz von 50 ml Diethylether 12 h auf -20° C gekühlt. Das gelbe Kristallisat wird abfiltriert, mit 10 ml Diethylether gewaschen und i. Vac. getrocknet. Ausbeute: 1.5 g (92%), Zers. P. 115°C. IR (Acetonitril): ν (CO) 1916s, 1817s, 1796s cm⁻¹. (Gef.: C, 41.1; H, 6.46; N, 3.91. C₁₁H₁₉CrNO₃P₂ ber.: C, 40.4; H, 5.85; N, 4.28%).

5. mer-Tricarbonyl-bis(dimethylphosphino)ethan-n^l-schwefeldioxid-chrom

1.5 g (5.0 mmol) Cr(CO)₃ (dmpe)MeCN werden bei 0°C in einem SO₂-gesättigten Gemisch aus 10 ml CH₂Cl₂ und 20 ml Hexan gelöst. In der tiefroten Lösung ist nach 2 h noch etwas facialer SO₂-Komplex nachweisbar (ν (CO) 1991 cm⁻¹), nach 12 h bei 0°C ist die Isomerisierung vollständig. Mit 150 ml Hexan fällt man das Produkt als dunkelrotes Öl, das nach mehrmaligem Umfällen aus CH₂Cl₂/Hexan als ziegelrotes Pulver kristallisiert. Man filtriert, wäscht mit Hexan und trocknet i. Vac. Ausbeute: 1.23 g (78%), Zers. P. 130°C. (Gef.: C, 31.9; H, 4.67; S, 9.16. C₉H₁₆CrO₅P₂S ber.: C, 30.9; H, 4.61; S, 9.15%).

6. fac-Tricarbonyl-acetonitril-bis(dimethylphosphino)ethan-molybdän

Eine Lösung von 1.4 g (4.0 mmol) $Mo(CO)_4$ dmpe [26,27] in 450 ml Acetonitril wird in einer Tauchlampenapparatur (Duranschacht, 150 W-Hg-Hochdruckbrenner) unter Eiskühlung bis zur vollständigen Umsetzung bestrahlt (ca. 90 min, IR-Kontrolle). Man entfernt das Solvens i. Vac. und setzt das verbleibende dunkelbraune Öl ohne weitere Reinigung mit SO₂ um. IR (Acetonitril): ν (CO) 1925s, 1827s, 1800s cm⁻¹.

7. fac-Tricarbonyl-bis(dimethylphosphino)ethan- η^2 -schwefeldioxid-molybdän und mer-Tricarbonyl-bis(dimethylphosphino)ethan- η^1 -schwefeldioxid-molybdän

Ein Gemisch aus 25 ml CH₂Cl₂ und 25 ml Hexan wird bei 0°C mit SO₂ gesättigt und zum Rückstand aus 6. gegeben. Nach 2 h bei 0°C zeigt ein IR-Spektrum vollständige Umsetzung zum facialen SO2-Komplex an. Man filtriert über Celite, setzt 100 ml Hexan zu und kühlt auf -70°C. Das ausgeschiedene tiefrote Öl wird unter SO₂-Atmosphäre bei 0°C in 10 ml CH₂Cl₂ und 50 ml Hexan aufgenommen. Man kühlt erneut auf -70° C und setzt weitere 50 ml Hexan zu. Bisweilen fällt das Produkt wieder als Öl an, das jedoch im Verlaufe einiger Tage bei -20° C kristallisiert. Man filtriert ab, wäscht mit 10 ml Hexan und trocknet im Stickstoffstrom. Ausbeute: 0.41 g (26%) mer-Isomeres. Orangefarbenes Pulver, Schmp. 131°C (Zers.). (Gef.: C, 27.2; H, 3.87; S, 8.08. $C_0H_{16}MOO_{c}P_{2}S$ ber.: C, 27.4; H, 4.09; S, 8.13%). Die Mutterlauge wird i. Vac. auf 30 ml eingeengt und auf -20° C gekühlt. Das ausfallende dunkelbraune Pulver wird abfiltriert, mit 5 ml Hexan gewaschen und im Stickstoffstrom getrocknet. Ausbeute: 0.24 g (15%) fac-Isomeres, enthält nach Aussage seiner IR- und ³¹P-NMR-Spektren noch ca. 10% mer-Isomeres. Zur gezielten Darstellung des meridionalen Isomeren setzt man der Reaktionslösung einige Tropfen Methyliodid zu and lässt bei 20°C bis zur vollständigen Isomerisierung (einige Tage, IR-Kontrolle) stehen.

8. fac-Tricarbonyl-acetonitril-bis(dimethylphosphino)ethan-wolfram

Man bestrahlt wie unter 6. beschrieben eine Lösung von 1.12 g (2.5 mmol) $W(CO)_4$ dmpe [26,27] in 180 ml Acetonitril. Das Lösungsmittel wird i. Vac. entfernt, der ölige Rückstand in 50 ml THF aufgenommen und die bräunlich-gelbe Lösung über Celite filtriert. Man setzt unter Rühren bei 0°C langsam 150 ml Hexan zu, filtriert das ausgefallene gelbe Pulver ab und trocknet i. Vac. Ausbeute: 0.68 g (60%). IR (Acetonitril): ν (CO) 1919s, 1820s, 1799s cm⁻¹. Das Produkt wird ohne weitere Reinigung mit SO₂ umgesetzt.

9. mer-Tricarbonyl-bis(dimethylphosphino)ethan-η¹-schwefeldioxid-wolfram

0.6 g (1.3 mmol) W(CO)₃(dmpe)MeCN werden bei 0°C in 10 ml SO₂-gesättigtem CH₂Cl₂ gelöst. Die dunkelrote Lösung lässt man zur vollständigen Isomerisierung noch 2 d bei 0°C stehen (IR-Kontrolle). Man filtriert über Celite, kühlt auf -20°C und setzt 60 ml Hexan zu, dabei scheidet sich ein dunkelrotes Öl ab. Dieses wird noch zweimal wie beschrieben aus CH₂Cl₂/Hexan umgefällt, beim Kühlen auf -70°C schliesslich kristallisiert das Produkt aus. Man filtriert ab, wäscht mit 10 ml Hexan und trocknet im Stickstoffstrom. Ausbeute: 0.25 g (40%), orangefarbenes Pulver, Schmp. 116°C (Zers.). (Gef.: C, 23.0; H, 3.11; S, 6.48. C₉H₁₆O₃P₂SW ber.: C, 22.4; H, 3.35; S, 6.65%). Unter Umständen enthält das Produkt noch 5–10% *fac*-Isomeres (IR), das sich durch Extraktion mit CS₂ entfernen lässt. Für die ³¹P-NMR-Messung wurde das *fac*-Isomere im NMR-Rohr wie oben in SO₂-gesättigtem CDCl₃ dargestellt.

10. fac-Tricarbonyl-bis(diphenylphosphino)ethan-n²-schwefeldioxid-wolfram

Man verfährt wie bei der Darstellung des *mer*-Isomeren [3], fällt jedoch, sobald die Umsetzung vollständig ist (IR-Kontrolle), das Produkt bei 0°C mit 10 ml-Portionen Hexan in mehreren Fraktionen aus. Die erste tiefrote Kristallfraktion wird aus $CH_2Cl_2/Hexan$ umgefällt, mit Hexan gewaschen und im Stickstoffstrom

getrocknet. Ausbeute: 19% (bez. auf W(CO)₄dppe), Schmp. 150°C (Zers.). (Gef.: C, 47.3; H, 3.11; S, 4.27. $C_{29}H_{24}O_5P_2SW$ ber.: C, 47.7; H, 3.31; S, 4.39%). Die übrigen Fraktionen (64%) bestehen zu ca. 2/3 aus *mer*-Isomerem.

11. fac-Tricarbonyl-acetonitril-bis(methyldiphenylphosphin)-chrom

Zu einer Lösung von 1.3 g (5.0 mmol) $Cr(CO)_3(MeCN)_3$ [25] in 40 ml Acetonitril gibt man im Abstand von 2 h 2 Portionen von jeweils 1.0 g (5.0 mmol) PPh₂Me und rührt insgesamt 5 h bei Raumtemperatur (IR-Kontrolle). Man filtriert die gelbe Lösung durch Celite und engt i. Vac. auf 15 ml ein. Nach Zusatz von 30 ml Diethylether kühlt man auf -20° C, filtriert das gelbe Produkt ab, wäscht mit 20 ml Diethylether und trocknet kurz i. Vac. Ausbeute: 1.50 g (52%). IR (Acetonitril): ν (CO) 1922vs, 1826s, 1804s cm⁻¹. Die Verbindung gibt aufgrund ihrer Zersetzlichkeit unbefriedigende Werte bei der Elementaranalyse.

12. mer, trans-Tricarbonyl-bis(methyldiphenylphosphin)-n¹-schwefeldioxid-chrom

Man sättigt ein Gemisch aus 6 ml CH_2Cl_2 und 6 ml Hexan bei 0°C mit SO_2 und gibt 0.9 g (1.6 mmol) $Cr(CO)_3(PPh_2Me)_2MeCN$ zu. Man rührt die rote Lösung 4 h bei 0°C unter SO_2 (IR-Kontrolle), filtriert, setzt 5 ml Hexan zu und kühlt auf -70°C. Das Produkt fällt zunächst als tiefrotes Öl an, innerhalb mehrerer Wochen bilden sich bei -20°C unter gelegentlichem Zusatz einiger ml Hexan schwarze Kristalle. Man filtriert, wäscht mit 5 ml Hexan und trocknet im Stickstoffstrom. Ausbeute: 0.25 g (27%), Zers. P. 133°C. (Gef.: C, 58.1; H, 4.51; S, 5.24. $C_{29}H_{26}CrO_5P_2S$ ber.: C, 58.0; H, 4.36; S, 5.34%).

13. fac-Tricarbonyl-acetonitril-bis-trimethylphosphit-chrom

Darstellung wie unter 11. Da das Produkt stets ölig anfällt, wird das Solvens i. Vac. restlos entfernt und das Öl ohne weitere Reinigung mit SO₂ umgesetzt. IR (Acetonitril): ν (CO) 1948vs, 1858s, 1826s cm⁻¹.

14. mer, trans-Tricarbonyl-bis(trimethylphosphit)-n¹-schwefeldioxid-chrom

Ein Gemisch aus 10 ml CH_2Cl_2 und 10 ml Hexan wird bei 0°C mit SO₂ gesättigt und zu 2.1 g (5.0 mmol) $Cr(CO)_3(P(OMe)_3)_2MeCN$ gegeben. Die Aufarbeitung erfolgt wie unter 12. Ausbeute: 0.52 g (23%), hellrote Kristalle, Schmp. 110°C (Zers.). (Gef.: C, 23.9; H, 4.06; S, 7.15. $C_9H_{18}CrO_{11}P_2S$ ber.: C, 24.1; H, 4.05; S, 7.15%).

15. fac-Tricarbonyl-acetonitril-bis(methyldiphenylphosphin)-molybdän

Darstellung wie unter 11. Ausbeute: 2.0 g (80%), hellgelbes Pulver, Zers. P. 120°C. IR (Acetonitril): ν (CO) 1931vs, 1832s, 1810s cm⁻¹. (Gef.: C, 61.1; H, 5.22; N, 2.20. C₃₁H₂₉MoNO₃P₂ ber.: C, 59.9; H, 4.70; N, 2.25%). Das Produkt wird ohne weitere Reinigung mit SO₂ umgesetzt.

16. mer, trans-Tricarbonyl-bis(methyldiphenylphosphin)-η¹-schwefeldioxid-molybdän

Darstellung wie unter 12. Ausbeute: 0.33 g (33%), schwarze Kristalle, Schmp. 106°C (Zers.). (Gef.: C, 52.4; H, 4.15; S, 4.23. C₂₉H₂₆MoO₅P₂S ber.: C, 54.0; H, 4.07; S, 4.97%).

17. fac-Tricarbonyl-acetonitril-bis(triisopropylphosphit)-molybdan

Darstellung wie unter 11. Das Produkt fällt als Öl an und wird nach Entfernen des Lösungsmittels i. Vac. ohne weitere Reinigung mit SO₂ umgesetzt. IR (Acetonitril): ν (CO) 1941vs, 1844s, 1822s cm⁻¹.

18. mer, trans-Tricarbonyl-bis(triisopropylphosphit)- η^{1} -schwefeldioxid-molybdän

Darstellung wie unter 14. Ausbeute: 0.23 g (7%), rotviolette Nadeln, Schmp. 87°C (Zers.). (Gef.: C, 36.5; H, 6.24; S, 4.20. $C_{21}H_{42}MoO_{11}P_2S$ ber.: C, 38.2; H, 6.41; S, 4.85%).

19. fac-Tricarbonyl-acetonitril-bis(methyldiphenylphosphin)-wolfram

Darstellung wie unter 18. Zur vollständigen Umsetzung ist jedoch eine Reaktionszeit von 2 d erforderlich. Ausbeute: 1.67 g (47%), hellgelbes Pulver, Zers. P. 150°C. IR (Acetonitril): ν (CO) 1923vs, 1825s, 1805s cm⁻¹. (Gef.: C, 52.6; H, 4.05; N, 2.13. C₃₁H₂₉NO₃P₂W ber.: C, 52.5, H, 4.12; N, 1.98%).

20. mer, trans-Tricarbonyl-bis(methyldiphenylphosphin)- η^{1} -schwefeldioxid-wolfram

Darstellung wie unter 12. Ausbeute: 0.53 g (47%), schwarzbraunes Pulver, Schmp. 96°C (Zers.). (Gef.: C, 47.4; H, 3.55; S, 4.38. $C_{29}H_{26}O_5P_2SW$ ber.: C, 47.6; H, 3.58; S, 4.38%).

21. mer-trans-Tricarbonyl-bis(trimethylphosphit)-η¹-schwefeldioxid-wolfram

2.45 g (5.0 mmol) Et₄N[W(CO)₅Cl] [28] und 1.3 g (10 mmol) Trimethylphosphit werden in 50 ml THF 90 min unter Rückfluss erhitzt, wobei das abgespaltene CO mehrmals durch Anlegen von Vacuum entfernt wird. Nach Abziehen des Lösungsmittels i. Vac. erhält man ein gelbes Öl, das neben dem gewünschten Et₄N[W(CO)₃(P(OMe)₃)₂Cl] (IR (THF): ν (CO) 1928vs, 1833s, 1778s cm⁻¹) noch W(CO)₄(P(OMe)₃)₂ und W(CO)₃(P(OMe)₃)₃ [29] enthält. Dieses Produktgemisch wird gemeinsam mit 1.8 g (5.3 mmol) NaBPh₄ in 80 ml Hexan und 20 ml CH₂Cl₂ suspendiert und 7 h bei 0°C unter SO₂-Atmosphäre gerührt. Man filtriert die rote Lösung über Celite, versetzt mit 20 ml Hexan und kühlt auf – 70°C. Das ausgefallene rote Öl wird mehrmals aus CH₂Cl₂/Hexan umgefällt, bis es in hellroten Nadeln kristallisiert. Man filtriert, wäscht mit kaltem Hexan und trocknet im Stickstoffstrom. Ausbeute: 0.87 g (30%), Schmp. 68°C (Zers.). (Gef.: C, 18.9; H, 2.90; S, 5.50. C₉H₁₈O₁₁P₂SW ber.: C, 18.6; H, 3.13; S, 5.53%).

22. mer, cis-Dicarbonyl-acetonitril-bis(diphenylphosphino)ethan-trimethylphosphinmolybdän

Eine Suspension von 3.36 g (5.0 mmol) $Mo(CO)_2(C_3H_5)(dppe)Br$ [8] in 40 ml Benzol/Acetonitril (1/1) wird mit 0.76 g (10 mmol) PMe₃ versetzt und bei 20°C gerührt. Nach 4 h ist die Reaktion beendet (IR), man engt i. Vac. auf 10 ml ein und fällt das Produkt mit 30 ml Ethanol. Die gelben Kristalle werden abfiltriert, mit wenig Ethanol gewaschen und i. Vac. getrocknet. Ausbeute: 3.34 g (75%), Zers. P. 140°C. IR (Nujol): ν (CN) 2259vw, ν (CO) 1822s, 1746s cm⁻¹. (Gef.: C, 59.7; H, 5.24; N, 1.12. C₃₃H₃₆MoNO₂P₃ ber.: C, 59.4; H, 5.44; N, 2.10%).

23. trans-Dicarbonyl-bis(diphenylphosphino)ethan-trimethylphosphin- η^{1} -schwefeldioxid-molybdän

40 ml CH₂Cl₂/Hexan (1/1) werden bei 0°C mit SO₂ gesättigt und mit 1.33 g (20 mmol) Mo(CO)₂(dppe)(PMe₃)MeCN versetzt. Nach 4 h ist die Umsetzung vollständig (IR), aus der filtrierten Lösung fällt man das Produkt langsam mit 50 ml Hexan, filtriert die orangefarbenen Kristalle ab, wäscht sie mit Hexan und trocknet i. Vac. Ausbeute: 0.83 g (60%), Zers. P. 180°C. (Gef.: C, 52.6; H, 4.58; S, 4.02. C₃₁H₃₃MoO₄P₃S ber.: C, 53.9; H, 4.82; S, 4.64%).

24. mer, cis-Dicarbonyl-acetonitril-bis(diphenylphosphino)ethan-methyldiphenylphosphin-molybdän

Darstellung wie unter 22, Reaktionszeit ca. 2 d. Ausbeute: 3.29 g (83%), gelbes Pulver, Zers. P. 135°C. IR (Nujol): ν (CN) 2251vw, ν (CO) 1822s, 1752s cm⁻¹. (Gef.: C, 65.2; H, 5.17; N, 1.60. C₄₃H₄₀MoNO₂P₃ ber.: C, 65.2; H, 5.09; N, 1.77%).

25. trans-Dicarbonyl-bis(diphenylphosphino)ethan-methyldiphenylphosphin- η^l -schwefeldi-oxid-molybdän

Darstellung wie unter 23. Ausbeute: 0.98 g (60%), orangefarbene Kristalle, die nach ihrem ¹H-NMR-Spektrum ca. 0.5 bis 1 mol CH₂Cl₂ enthalten. (Gef.: C, 57.4; H, 4.43; S, 3.84. $C_{41}H_{37}MoO_4P_3S \cdot CH_2Cl_2$ ber.: C, 56.1; H, 4.37; S, 3.56%).

26. mer, cis-Dicarbonyl-acetonitril-bis(diphenylphosphino)ethan-triisopropylphosphinmolybdän

Darstellung wie unter 22, Reaktionszeit 1 h. Ausbeute: 3.61 g (96%), gelbes Pulver, Zers. P. 145°C. IR (Nujol): ν (CN) 2244vw, ν (CO) 1808s, 1738s cm⁻¹. (Gef.: C, 64.8; H, 6.32; N, 1.77. C₃₉H₄₈MoNO₂P₃ ber.: C, 62.3; H, 6.44; N, 1.86%).

27. trans-Dicarbonyl-bis(diphenylphosphino)ethan-triisopropylphosphin- η^l -schwefeldioxidmolybdän

Darstellung wie unter 23, Ausbeute: 0.96 g (62%), gelb-orange Kristalle, Zers. P. 105°C. (Gef.: C, 57.2; H, 5.73; S, 4.07. $C_{37}H_{45}MoO_4P_3S$ ber.: C, 57.4; H, 5.86; S, 4.14%).

28. Versuche zur SO₂-Substitution

Eine Spatelspitze des SO₂-Komplexes wurde in 1 ml Pyridin gelöst und die Reaktion IR-spektroskopisch verfolgt. Die entstehenden Produkte wurden anhand ihrer ν (CO) identifiziert. Aus *fac*- und *mer*-M(CO)₃(dmpe)SO₂ entsteht *fac*-M(CO)₃(dmpe)py, aus *mer,trans*-M(CO)₃(PR₃)₂SO₂ erhält man *mer,trans*-M(CO)₃(PR₃)₂py, lediglich *mer,trans*-W(CO)₃(PPh₂Me)₂SO₂ ergibt *fac*-W(CO)₃(PPh₂Me)₂py. Die Dicarbonyle sind unter diesen Bedingungen inert gegen Pyridin.

Dank

Dem Fonds der Chemischen Industrie danken wir für ein Doktoranden-Stipendium und die Unterstützung mit Sachmitteln.

Literatur

- 1 D.M.P. Mingos, Transition Met. Chem., 3 (1978) 1.
- 2 R.R. Ryan, G.J. Kubas, D.C. Moody und P.G. Eller, Structure and Bonding, Bd. 46, S. 47, Springer-Verlag, Berlin 1981.
- 3 W.A. Schenk und F.E. Baumann, Chem. Ber., 115 (1982) 2615.
- 4 Ch. Burschka, F.E. Baumann und W.A. Schenk, Z. Anorg. Allg. Chem., im Druck.
- 5 C.G. Hull und M.H.B. Stiddard, J. Chem. Soc. A, (1968) 710.
- 6 J.D. Atwood und T.L. Brown, J. Amer. Chem. Soc., 98 (1976) 3155; J.D. Atwood und T.L. Brown, J. Amer. Chem. Soc., 98 (1976) 3160; M.A. Cohen und T.L. Brown, Inorg. Chem., 15 (1976) 1417.
- 7 W.A. Schenk, J. Organomet. Chem., 184 (1980) 195.
- 8 H. tom Dieck und H. Friedel, J. Organomet. Chem., 14 (1968) 375.
- 9 H. Friedel, I.W. Renk und H. tom Dieck, J. Organomet. Chem., 26 (1971) 247.
- 10 F. Hohmann und H. tom Dieck, J. Organomet. Chem., 85 (1975) 47.
- 11 B.J. Brisdon, D.A. Edwards und K.E. Paddick, Transition Met. Chem., 6 (1981) 83.
- 12 W.A. Schenk und W. Buchner, Inorg. Chim. Acta, 70 (1983) 189.
- 13 G.J. Kubas, J. Chem. Soc., Chem. Commun., (1980) 61.
- 14 T.G. Appleton, H.C. Clark und L.E. Manzer, Coord. Chem. Rev., 10 (1973) 335.
- 15 W. Buchner und W.A. Schenk, Inorg. Chem., eingereicht zur Publikation.
- 16 G.J. Kubas, R.R. Ryan und V. Mc Carty, Inorg. Chem., 19 (1980) 3003.
- R. Mews, Angew. Chem., 87 (1975) 669; Angew. Chem., Int. Ed. Engl., 14 (1975) 640; G. Hartmann,
 R. Froböse, R. Mews und G.M. Sheldrick, Z. Naturforsch. B, 37 (1982) 1234.
- 18 W. Strohmeier, G. Popp und J.F. Guttenberger, Chem. Ber., 99 (1966) 165.
- 19 B. Roos und P. Siegbahn, Theoret. Chim. Acta, 21 (1971) 368.
- 20 P.D. Dacre und M. Elder, Theoret. Chim. Acta, 25 (1972) 254.
- 21 R.G. Pearson, Inorg. Chem., 12 (1973) 712.
- 22 J.K. Burdett und T.A. Albright, Inorg. Chem., 18 (1979) 2112.
- 23 G.J. Kubas, G.D. Jarvinen und R.R. Ryan, J. Amer. Chem. Soc., 105 (1983) 1883.
- 24 W.A. Schenk und H. Müller, Chem. Ber., 115 (1982) 3618.
- 25 D.P. Tate, W.R. Knipple und J.M. Augl, Inorg. Chem., 1 (1962) 433.
- 26 J.A. Connor, J.P. Day, E.M. Jones und G.K. Mc Ewen, J. Chem. Soc., Dalton Trans., (1973) 347.
- 27 K.Y. Hui und B.L. Shaw, J. Organomet. Chem., 124 (1977) 262.
- 28 E.W. Abel, I.S. Butler und J.G. Reid, J. Chem. Soc., (1963) 2068.
- 29 R. Mathieu, M. Lenzi und R. Poilblanc, Inorg. Chem., 9 (1970) 2030.